We defined the limit of a sequence as follows.
Definition 1. The number L is the limit of a sequence $\left\{a_{n}\right\}$, if for any natural number m there exists a number N_{m} such that $\left|L-a_{n}\right| \leq \frac{1}{m}$ holds for all $n \geq N_{m}$.

It is equivalent to the definition following definition given in page 35 of the textbook.

Definition 2. The number L is the limit of a sequence $\left\{a_{n}\right\}$, if for any positive number $\epsilon>0$ there exists a number \bar{N}_{ϵ} such that $\left|L-a_{n}\right| \leq \epsilon$ holds for all $n \geq \bar{N}_{\epsilon}$.

One can observe that ϵ in definition 2 plays the role of $\frac{1}{m}$ in definition 1 .

When we show a sequence is unbounded, we will frequently use the following Theorem.

Theorem 3. Given any number N, there exists a large natural number n such that $n \geq N$ holds.

Let us consider an example.
Problem 4. Show that the sequence $\{\sqrt{n}\}_{n \geq 0}$ is not bounded above.
Proof. Assume that $\{\sqrt{n}\}_{n \geq 0}$ is bounded above. Then, by definition of bounded sequences, there exists a number B such that $\sqrt{n} \leq B$ holds for all $n \geq 0$. Namely, $n \geq B^{2}$ holds for all $n \geq 0$. This contradicts the above theorem. Therefore, $\{\sqrt{n}\}_{n \geq 0}$ is unbounded.

